
http://wiki.ivlab.iminds.be Page 1 / 7

1.
2.
3.
4.
5.

a.

b.
6.

Test Scripts: REST
Consent: Test Scripts: REST
Identity & Access Management: Test Scripts: REST
Therapeutic Exclusion: Test Scripts: REST
Therapeutic Link: Test Scripts: REST

Execution summary
1 Test architecture

1.1 Logical view
1.2 Implementation view

2 Test methodology
3 Test workflow

3.1 Testing the integration of the authentication
3.2 Checking eHealth basic services (consent, therapeutic exclusion and therapeutic links)

3.2.1 Getting data from the request component (relative to one profile)
3.2.2 Running the assertions

Execution summary
(Start the local application SUT - System Under Test)
Start the ResponseRepository
Execute / to fetch data from the SUTSeleniumRequest AppiumRequest
Stop the SUT
Start the TokenGenerator

In a web browser, paste your IAM Connect access URL (e.g. https://api-acpt.ehealth.fgov.be/auth/realms/{myRealm}/protocol
/openid-connect/auth?client_id={myClientId}&nonce={nonce}&redirect_uri=http://localhost:8080

)/login&response_type=code&scope=openid
Login with the same user than previously

Run the scriptsAssertion

 More information in projects' readme.md

1 Test architecture

1.1 Logical view
gh-level description of the logical components of the architectThe logical view provides a hi ure independently from any implementation. It eases

the identification of the various components and mechanisms of the system to be implemented and the definition for each of them their
technological role(s).

In the Figure below, the logical view of the test architecture is depicted. We describe this view from the left to the right. Each use-case is
composed by one or multiple user story (ies). Each user story is used to (1) check the initial data, (2) to create user request and (3) to test if the
result of the request is correct.

The application connector allows to make generic test scripts. The test script tests features and the device connector allows to run these scripts
on any platform (Android version, iOS version, Windows desktop application,...).

The vendor application could be hosted on a website, a mobile application or a desktop application (application used by a practitioner). It is
noteworthy that in this project only the mobile application will be implemented. The vendor applications get data from their own backend server or
directly from the eHealth services.

https://wiki.ivlab.ilabt.imec.be/display/EBS/Consent%3A+Test+Scripts%3A+REST
https://wiki.ivlab.ilabt.imec.be/pages/viewpage.action?pageId=22350663
https://wiki.ivlab.ilabt.imec.be/display/EBS/Therapeutic+Exclusion%3A+Test+Scripts%3A+REST
https://wiki.ivlab.ilabt.imec.be/display/EBS/Therapeutic+Link%3A+Test+Scripts%3A+REST
https://api-acpt.ehealth.fgov.be/auth/realms/{myRealm}/protocol/openid-connect/auth?client_id={myClientId}&nonce={nonce}&redirect_uri=
https://api-acpt.ehealth.fgov.be/auth/realms/{myRealm}/protocol/openid-connect/auth?client_id={myClientId}&nonce={nonce}&redirect_uri=
http://localhost:8080/login&response_type=code&scope=openid
http://localhost:8080/login&response_type=code&scope=openid
http://readme.md

http://wiki.ivlab.iminds.be Page 2 / 7

1.2 Implementation view
The implementation view is used to describe the components of the architecture, focusing on the tools and technologies used to implement them
(development environment, programming languages, protocols, third party software, …).

Request

The Request component is composed of two main parts: the Application connector and the Website connector. The Application connector integrat
es Appium which is an open source test automation framework for use with native, hybrid and mobile web apps. It drives iOS, Android, and
Windows apps using the WebDriver protocol. Appium receives HTTP requests from test scripts and translates these HTTP requests into actions
on the application. Applications are controlled via the WebDriver protocol (formerly JSON Wire Protocol). There exist 2 versions of Appium:

Appium Server: command line interface only
Appium desktop: application for Mac/windows allowing to launch an Appium server and inspecting an application. While inspecting an ap
plication, Appium generates a client code to automate action(s) of users. This client code could be imported into your test script.

Whereas the second part integrates with Selenium which is a portable framework for testing web applications. It provides a recording tool for
authoring functional tests without the need to learn a test scripting language (Selenium IDE). It also provides a test domain-specific language
(Selenese) to write tests in a number of popular programming languages. The tests can then run against most modern web browsers. Selenium
deploys on Windows, Linux, and macOS platforms.

http://wiki.ivlab.iminds.be Page 3 / 7

The Mobile connector component enables to connect the request component to the vendor mobile application. It integrates with Android Debug
Bridge (ADB) which is a versatile command-line tool to communicate with a device. The ADB command facilitates a variety of device actions,
such as installing and debugging apps, and it provides access to a Unix shell that you can use to run a variety of commands on a device. The ADB

It allows you to connect to a physical device or virtual device (e.g. emulated by Android is included in the Android SDK Platform-Tools package.
Studio).

Response repository

The response repository component makes the links between the generic tests (Assertion) and the vendor specific tests (Request). The request
component runs and stores the results on the Response Repository component. The assertion component uses the data from the
Repository component to make assertion with the results obtained from eHealth.

Assertion

The Citrus project is a Java project using the Citrus libraries.

Citrus is a test framework written in Java that enables automated integration testing of message-based EAI applications. The tool can easily
simulate surrounding systems across various transports and protocols (e.g. JMS, SOAP WebServices, Http, TCP/IP, …) in order to perform end-
to-end use case testing. Citrus provides strong validation mechanisms for XML message contents and allows to build complex testing logic.

The structure of the Java project will be split into use cases and each use case will be split into user stories. A user story defines a functionality
that must be tested.

Vendor services

This part presents an optional component that may play the role of the backend between a frontend and the eHealth Platform. Vendor services
are generally used to merge data coming from different sources/protocols.

eHealth services

This part presents the eHealth platform which integrates with two main components: the authentication server and the basic services. The
authentication server authenticates a user and defines access rights to the application (with a configured Realm). If the access is authorized the
user can invoke to the basic services (e.g. consent, therapeutic link, therapeutic exclusion, etc.) with a REST interface.

2 Test methodology
In order to test and validate how the vendor mobile applications use the services of the eHealth platform, we defined a test methodology based
on two steps. The first step denotes the test and the validation of the authentication. The second step represents the test and the validation of the
use of the eHealth basic services.

http://wiki.ivlab.iminds.be Page 4 / 7

The authentication tests step includes the following elements:

Authentication: The authentication consists to authenticate a user to a given vendor application. This latter must be emulated on a test
computer and the authentication process must be done with the Chrome browser.
IDP Check: The Check component enables to get the cookie "shib_idp_session" created by the IDP in order to check if the application is
correctly logged in the eHealth platform.
Authentication.properties" file: This file contains required information (i.e. first name, the last name, and the desired profile) in order to
check and validate the authentication of the user to the IDP.

The basic services tests step with the following elements:integrates

Request part: It is specific to the application to test and must be implemented by the vendor. The request part could be implemented
with on Selenium or Appium framework It contains the request enabling to get the data which must be validated (e.g. . getting the value of
the textbook containing data about the patient consent).
Result of the request: The results of the request part are stored in the response repository (e.g. storing the result of the patient
consent).
Assertion part: The assertion part integrates a set of generic scripts enabling to compare data coming from the request part with the
data given by the eHealth platform.

3 Test workflow
 The following schema defines how to sequence tests.

http://wiki.ivlab.iminds.be Page 5 / 7

1.

2.
3.

3.1 Testing the integration of the authentication
Considered test scripts: (Identity & Access Management (IAM) Test scripts)TS-0XX

Scope: The aim of these test scripts is to check if the application opens correctly an IDP and IAM when the user tries to authenticate him session
/herself via one of the following ways: eID, itsMe or TOTP.

Test environment configuration

Module Name Used Configuration needed

Assertion X citrus.properties (IAM Configuration section)

ResponseRepository

SeleniumRequest

AppiumRequest

tokenGenerator

An instance of your application must be available. (backend + gui)

Manual actions: These tests should be semi-automatic because the user has to identify him/herself on the CSAM portal via eID, TOTP or itsme
and on the IDP (e.g. choosing a profile, choosing a mandate, etc.).

Operations

Test script Operation

TS-001

partially
automatic

Before running this test, configure the "citrus.properties" file with the right credentials of the user (i.e. first name and the
last name) and the desired profile
Start the application and identify yourself depending on the information in the "citrus.properties" file.
Update the "pom" of assertion module with "M2-IAM-Authentication.xml" test suite and run the project (mvn package)

http://wiki.ivlab.iminds.be Page 6 / 7

1.

2.
3.
4.

1.
2.
3.

1.
2.

TS-002

partially
automatic

Before running this test, configure the "citrus.properties" file with the right credentials of the user (i.e. first name and the
last name) and the desired profile
Start the application and identify yourself depending on the information in the "citrus.properties" file.
Logout locally from the application
Update the "pom" of assertion module with "M2-IAM-LocalLogout.xml" test suite and run the project (mvn package)

TS-003

partially
automatic

Start the application and identify yourself with respect to the information in the "citrus.properties" file.
Logout globally from the application
Update the "pom" of assertion module with "M2-IAM-GlobalLogout.xml" test suite and run the project (mvn package)

TS-004

manual

Same as TS-001 but following the profile chosen the application must display a welcome page depending of the chosen profile

TS-005

deduction

Test succeeded if TS-001, TS-003 and TS-004 passed

TS-006

manual

Test succeeded if TS-001 and TS-004 passed with a mandate.

TS-007

deduction

Test succeeded if test TS-006 and TS-003 passed

TS-008

partially
automatic

Start the application and identify yourself with a revoked mandate. (it must fail)
Update the "pom" of assertion module with "M2-IAM-FailedAuthentication.xml" test suite and run the project (mvn
package)

3.2 Checking eHealth basic services (consent, therapeutic exclusion
and therapeutic links)
Considered test scripts: TS-1XX (consent), TS-2XX (therapeutic link), TS-3XX (therapeutic exclusion)

Scope: These tests aim to validate the basic functionalities of eHealth. The aim of these test scripts is to check if the application displays the
correct information.

These tests are grouped on test-suites. Each test suite relevant to one specific user profile and run tests on the 3 health basic services (consent,
therapeutic link and therapeutic exclusion)

Following the test methodology described before, executing a test-case needs 2 steps: getting data from the application and making the assertion.

For each profile, the combination of Appium/Selenium scripts and the Assertion module must be run separately.

3.2.1 Getting data from the request component (relative to one profile)

http://wiki.ivlab.iminds.be Page 7 / 7

Test environment configuration

Module Name used configuration needed

Assertion

ResponseRepository X

SeleniumRequest X Generally you have to use Selenium or Appium, the choice depends on the nature of the application to test.

AppiumRequest X

tokenGenerator

An instance of your application must be available. (backend)

The SeleniumRequest and the AppiumRequest modules contain scripts that are specific to the application to test. These 2 modules contain script
examples that get data from our ' eHealth MockApplication' and populate a data model. This data model will be used for the assertions.

Your scripts have to collect data from your application user interface and sent the collected data to the ResponseRepository module.

Your scripts must be grouped by user profile.

3.2.2 Running the assertions

Test environment configuration

Module Name Used Configuration needed

Assertion X

ResponseRepos
itory

X

SeleniumReque
st

AppiumRequest

tokenGenerator X Simulate a backend to give a token to the Assertion Module. The port of this module must be linked to the callback
of your Realm (default 8080)

Your application doesn't run. Your backend neither. The tokenGenerator is used instead.

Operations

Test suite Profile tested (flow) Basic eHealth service tested Test script run

M2-BasicService-PatientFlow.xml Patient consent, therapeutic exclusion, therapeutic links TS-101, TS-202, TS-302

M2-BasicService-Physician.xml Physician consent, therapeutic links TS-102, TS-203

	Test Scripts: REST

